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Algorithms & Data Structures Exercise sheet 8 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 20 November 2023.

Exercises that are marked by ∗ are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

We first recall some definitions from the lecture and introduce some new ones.

Definition 1. Let G = (V,E) be a graph.

• A sequence of vertices (v0, v1, . . . , vk) (with vi ∈ V for all i) is a walk (german “Weg”) if
{vi, vi+1} is an edge for each 0 ≤ i ≤ k − 1. We say that v0 and vk are the endpoints (german
“Startknoten” and “Endknoten”) of the walk.

• A sequence of vertices (v0, v1, . . . , vk) is a closed walk (german “Zyklus”) if it is a walk, k ≥ 2
and v0 = vk.

• A sequence of vertices (v0, v1, . . . , vk) is a path (german “Pfad”) if it is a walk and all vertices
are distinct (i.e., vi ̸= vj for 0 ≤ i < j ≤ k).

• A sequence of vertices (v0, v1, . . . , vk) is a cycle (german “Kreis”) if it is a closed walk, k ≥ 3
and all vertices (except v0 and vk) are distinct.

• A Eulerian walk (german “Eulerweg”) is a walk that contains every edge exactly once.

• A Hamiltonian path (german “Hamiltonweg”) is a path that contains every vertex.

• A Hamiltonian cycle (german “Hamiltonkreis”) is a cycle that contains every vertex.

• A graph G is connected (german “zusammenhängend”) if for every two vertices u, v ∈ V there
exists a path with endpoints u and v.1

• A graph G is a tree (german “Baum”) if it is connected and has no cycles.

Exercise 8.1 Introduction to graphs (1 point).

In this exercise, we want to prove the following statement: Among any six people, there are either
three that all know each other or three that all do not know each other (or both). We assume that this
relation is symmetric, so if person A knows person B, then also B knows A. We model the problem as
a graph. We define G = (V,E) to be a graph on 6 vertices, where the vertices correspond to the six
people and two people are connected by an edge if they know each other.

1We will see in exercise 8.5 that this definition is equivalent to the one given in the lecture (which was that a graph G is
connected if for every two vertices u, v ∈ V there exists a walk with endpoints u and v)



(a) Prove the above statement, i.e. that in every possible graph on 6 vertices, there are three vertices
that are all pairwise adjacent or there are three vertices that are all pairwise not adjacent.

Hint: Start with one vertex and notice that this vertex is either adjacent to (at least) three vertices or
not adjacent to (at least) three vertices.

Solution:

Pick any v ∈ V . We distinguish two cases: (i) deg(v) ≥ 3 and (ii) deg(v) ≤ 2.

(i) If deg(v) ≥ 3, consider three neighbors v1, v2, v3 of v. If any of the edges (v1, v2), (v1, v3) or
(v2, v3) is present in G, then these two vertices together with v form a set of three vertices
that are all pairwise adjacent. Otherwise, the vertices v1, v2, v3 are a set of three vertices that
are all pairwise not adjacent. In both cases, the statement holds.

(ii) Similary, if deg(v) ≤ 2, we consider three non-neighbors v1, v2, v3 of v. Either one of the
edges (v1, v2), (v1, v3) or (v2, v3) is not present in G, in which case these two vertices with
v are all pairwise not adjacent, or these three edges are all present in G, in which case v1, v2
and v3 are pairwise adjacent. In any case, the statement also holds in this case.

In summary, no matter what graph on 6 vertices we have, there are either three vertices that are all
pairwise adjacent or there are three vertices that are all pairwise not adjacent (or even both).

(b) Is the statement also true for five people? In other words, does the following hold: For any graph
G = (V,E) with 5 vertices, there are either three vertices that are all pairwise adjacent or there
are three vertices that are all pairwise not adjacent (or both). Provide a proof or a counterexample.

Solution:

We consider the graph G = (V,E), where

V = {v1, v2, v3, v4, v5}

and
E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v1}}.

In this graph, no set of three vertices are all pairwise adjacent (every vertex is adjacent to only
two vertices that are not adjacent to each other). Also, no set of three vertices are all not pairwise
adjacent (every vertex is not adjacent to only two vertices that are adjacent to each other). Hence,
the statement is false for graphs with 5 vertices.

Guidelines for correction:

Award 1/2 point for a correct proof in (a) and 1/2 point for a correct counterexample in (b).

Exercise 8.2 Domino.

(a) A domino set consists of all possible
(
6
2

)
+ 6 = 21 different tiles of the form [x|y], where x and y

are numbers from {1, 2, 3, 4, 5, 6}. The tiles are symmetric, so [x|y] and [y|x] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide.
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(b) What happens if we replace 6 by an arbitrary n ≥ 2? For which n is it possible to line up all
(
n
2

)
+n

different tiles along a line?

Solution:

We directly solve the general problem.

First we note that we may neglect tiles of the form [x|x]. If we have a line without them, then we can
easily insert them to any place with an x. Conversely, if we have a line with them then we can just
remove them. Thus the problems with and without these tiles are equivalent.

Consider the following graph G with n vertices, labelled with {1, . . . , n}. We represent the domino
tile [x|y] by an edge between vertices x and y. Then the resulting graphG is a complete graphKn, i.e.,
the graph where every pair of vertices is connected by an edge. A line of domino tiles corresponds to
a walk in this graph that uses every edge at most once, and vice versa. A complete line (of all tiles)
corresponds to an Eulerian walk in G. Thus we need to decide whether G = Kn has an Eulerian walk
or not.

Kn is obviously connected. If n is odd then all vertices have even degree n− 1, and thus the graph is
Eulerian. On the other hand, if n is even then all vertices have odd degree n− 1. If n ≥ 4 is even, then
there are at least 3 vertices of odd degree, and thereforeKn does not have an Eulerian walk. Finally, for
n = 2, the graph Kn is just an edge and has an Eulerian walk. Summarizing, there exists an Eulerian
walk if n = 2 or n is odd, and there is no Eulerian walk in all other cases. Hence, it is possible to line
up the domino tiles if n = 2 or n is odd, and it is impossible otherwise. In particular, it is not possible
for n = 6.

Exercise 8.3 Star search, reloaded.

A star in an undirected graphG = (V,E) is a vertex that is adjacent to all other vertices. More formally,
v ∈ V is a star if and only if {{v, w} | w ∈ V \ {v}} ⊆ E.

In this exercise, we want to find a star in a graph G by walking through it. Initially, we are located at
some vertex v0 ∈ V . Each vertex has an associated flag (a Boolean) that is initially set to False. We
have access to the following constant-time operations:

• countNeighbors() returns the number of neighbors of the current vertex

• moveTo(i)moves us to the ith neighbor of the current vertex, where i ∈ {1..countNeighbors()}

• setFlag() sets the flag of the current vertex to True

• isSet() returns the value of the flag of the current vertex

• undo() undoes the latest action performed (the movement or the setting of last flag)

Assume that G has exactly one star and |G| = n. Give the pseudocode of an algorithm that finds
the star, i.e., your algorithm should always terminate in a configuration where the current vertex is a
star in G. Your algorithm must have complexity O(|V |+ |E|), and must not introduce any additional
datastructures (no sets, no lists etc.). Show that your algorithm is correct and prove its complexity.
The behavior of your algorithm on graphs that do not contain a star or contain several stars can be
disregarded.
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Solution:

Consider the following algorithm:

Algorithm 1 Star-finding algorithm
while countNeighbors() ̸= n− 1 do

setFlag()

for i = 1 to countNeighbors() do
moveTo(i)
if isSet() then

undo()

else
break

In the following, we say that a vertex is marked if its flag is set to True. In each iteration of the while
loop, a new, previously unmarked vertex is explored (if the vertex was already marked, the movement
towards this vertex would have been undone). Hence, in each iteration, either the current vertex has
n−1 neighbors and the algorithm terminates (case 1), or the number of vertices to be explored decreases
by exactly one (case 2), or the current vertex has no unmarked neighbors and we loop forever on this
vertex (case 3). Whenever the algorithm reaches the star s ∈ V , it successfully terminates (case 1), since
a vertex is a star if and only if it has n− 1 neighbors. Now, the star s is, by definition, a neighbor of all
vertices; in particular, s is always a neighbor of the current vertex. Hence, for case 3 to occur, the star s
must have been previously marked. But this never occurs, since the algorithm always terminates when
reaching the star. Hence, only cases 1 and 2 can happen, and the number of unmarked vertices decreases
by exactly one in each iteration until the star is eventually reached. This proves the correctness of the
algorithm.

The cost of each iteration of the while loop is O(1) +O(1) +
∑deg v

i=1 (O(1) +O(1) +O(1)) = O(1) +
O(deg v), which sums up to atmost

∑
v∈V (O(1)+O(deg v)) = O(|V |)+O

(∑
v∈V deg v

)
= O(|V |)+

O(2|E|) = O(|V |+ |E|) as every vertex is explored at most once.

Exercise 8.4 Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees.

(a) A leaf is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a
leaf.

Hint: Consider the longest path in G. Prove that its endpoint is a leaf.

Solution:

Consider the longest path P = (v0, v1, v2, . . . , vk−1, vk) in G. Let a := v0 be an endpoint of P .
We claim a is a leaf. Suppose for the sake of contradiction that this is not true, i.e., the degree of a
is at least 2 (since the tree has at least two vertices, the degree cannot be 0). Hence, there exists a
neighbor b ̸= v1 of a. Now, consider the walk P ′ = (b, v0, v1, . . . , vk). This walk is longer than P ,
hence by choice of P , it cannot be a path. Therefore, since b is the only new addition, there must
exist an index i > 1 such that b = vi. But now, (b, v0, v1, . . . , vi) is a cycle in G, a contradiction.

(b) Prove that every tree with n vertices has exactly n− 1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf.
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Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the
induction hypothesis and conclude.

Solution:

We proceed by induction on n.

Base case: When n = 1, there can only be 0 = n − 1 edges. When n = 2, there exists a unique
tree (two vertices connected by an edge), and that one has 1 = n− 1 edge. This completes the base
case.

Induction hypothesis: Assume that the hypothesis is true for every tree with n ≥ 2 vertices, i.e.
it contains n− 1 edges.

Induction step: We now show the property holds for every tree G = (V,E) with |V | = n + 1
vertices.

Let u be a leaf inG (it must exist by part (a)), and let v be u’s only neighbor in the treeG = (V,E).
Consider the graph G′ := (V \ {u}, E \ {u, v}). We first argue that G′ is a tree.

Claim: G′ is connected.

Proof of Claim: Let a, b ∈ V \ {u}. SinceG is a tree, there exists a path P inG with endpoints a, b.
It is immediate that no path can contain a leaf except on its endpoints (or the leaf’s only incident
edge is used twice). Hence, P is also a path in G′. Thus, a and b are connected in G′. Since a and b
were arbitrary, G′ is connected. This completes the proof of this claim.

Claim: G′ has no cycles.

Proof of Claim: Suppose for the sake of contradiction that P is a cycle in G′. But since G′ is a
subgraph of G, P is also a cycle in G. However, G is a tree and thus cannot have a cycle. This
completes the proof of the second claim.

Combining the two claims, we proved that G′ is a tree. It contains |V \ {u}| = (n + 1) − 1 = n
vertices. Hence, by the induction hypothesis, |E \ {u, v}| = n − 1. Therefore, |E| = n, which
completes the induction step and the proof.

(c) Prove that a graph with n vertices is a tree if and only if it has n− 1 edges and is connected.

Hint: One direction is immediate by part (b). For the other direction (every connected graph with n−1
edges is a tree), use induction on n. First, prove there always exists a leaf by considering the average
degree. Then, disconnect the leaf from the graph and argue that the remaining graph is still connected
and has exactly one edge less. Apply the induction hypothesis and conclude.

Solution:

Suppose G is a tree. By definition, G is connected. By part (b), it has n − 1 edges. This completes
one direction of the implication.

We now prove the other direction. Suppose G is connected and has n − 1 edges. We proceed by
induction on n.

Base case: Let n = 1. The graph with a single vertex and 0 edges is trivially a tree. Let n = 2.
There exists one unique graph with 2 vertices and 1 edge, and that graph is also obviously a tree.
This completes the base case.

Induction hypothesis: Assume the hypothesis: Every connected graph with n ≥ 2 vertices and
n− 1 edges is a tree.
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Induction step: We now show the property holds for n+1. LetG = (V,E) be a connected graph
with n+ 1 vertices and n edges. The average degree in this graph is 2|E|/|V | = 2n/(n+ 1) < 2.
Hence, there must exist a vertex u with degree 1 (no connected graph with at least 2 vertices can
have 0-degree vertices). In other words, u is a leaf and let v be u’s only neighbor in G. Consider
the graph G′ := (V \ {u}, E \ {u, v}). Clearly, G′ has n− 1 edges.

Claim: G′ is connected.

Proof of Claim: Let a, b ∈ V \ {u}. SinceG is connected, there exists a path P inG with endpoints
a, b. As in part (b), no path can contain a leaf except on its endpoints. Hence, P is also a path inG′

and thus G′ is connected. This completes the proof of this claim.

Therefore, we can apply the induction hypothesis on G′ and conclude G′ is a tree. It is simple to
conclude that then G is also a tree: Any cycle in G must be fully contained in G′ (since it cannot
contain a leaf), and this is impossible since G′ is a tree.

(d) Write the pseudocode of an algorithm that is given a graph G as input and checks whether G is a
tree.

As input, you can assume that the algorithm has access to the number of vertices n, the number
of edges m, and to the edges {a1, b1}, {a2, b2}, . . . , {am, bm} (i.e., the algorithm has access to 2m
integers a1, . . . , am, b1, . . . , bm, where each edge of G is given by its endpoints ai and bi). You can
assume that the graph is valid (specifically, 1 ≤ ai, bi ≤ n and ai ̸= bi). The algorithm outputs
“YES” or “NO”, corresponding to whether G is a tree or not. Your algorithm must always complete
in time polynomial in n (e.g., even O(n10m10) suffices). You do not have to show the correctness
of your algorithm or what the running time of your algorithm is.

Hint: Use part (c). There exists a (relatively) simple O(n+m) solution. However, the official solution
is O(n ·m) for brevity and uses recursion to check if G is connected.

Example 1: n = 6
m = 5
a1, b1 = 1, 3
a2, b2 = 6, 1
a3, b3 = 3, 5
a4, b4 = 2, 3
a5, b5 = 4, 1

3

1

6 4

5 2

Output: YES

Example 2: n = 5
m = 4
a1, b1 = 1, 3
a2, b2 = 4, 5
a3, b3 = 5, 2
a4, b4 = 2, 4

4 5

2

3 1

Output: NO

Solution:
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Algorithm 2
1: Input: integers n,m. Collection of integers a1, b1, a2, b2, . . . , am, bm.
2:
3: Let visited[1 . . . n] be a global variable, initialized to False.
4:
5: function walk(u) ▷ Find all neighbors of u that have not been visited and walk there.
6: visited[u]← True
7: for i← 1 . . .m do ▷ Iterate over all edges.
8: if ai = u and not visited[bi] then
9: walk(bi)

10: if bi = u and not visited[ai] then
11: walk(ai)

12:
13: walk(1) ▷ Find all vertices connected to 1.
14: connected← True if visited[·] = [True, True, . . . , T rue] and connected← False otherwise
15: if connected = True and m = n− 1 then ▷ Use the characterization from part (c).
16: Print(“YES”)
17: else
18: Print(“NO”)

Exercise 8.5 Short questions about graphs (2 points).

In the following, let G = (V,E) be a graph, n = |V | and m = |E|.

(a) Let v ̸= w ∈ V . Prove that if there is a walk with endpoints v and w, then there is a path with
endpoints v and w.

Solution:

If there is a walk with endpoints v and w, consider a walk W : v = v0, v1, . . . , vk = w between
these two vertices with the shortest length. Since v ̸= w, k ≥ 1. If W is not a path, then there are
0 ≤ i < j ≤ k with vi = vj . But then, v = v0, v1, . . . , vi = vj , vj+1, . . . , vk = w is a walk between
v and w with length k − (j − i) < k, contradicting the choice of the walk. Hence, W is a path, so
there is a path with endpoints v and w.

For each of the following statements, decide whether the statement is true or false. If the statement is
true, provide a proof; if it is false, provide a counterexample.

(b) Every graph withm ≥ n is connected.

Solution:

This statement is false.
Consider the graph G that is a disjoint union of two cycles of length 3, i.e.

V = {v1, v2, v3, v4, v5, v6}

and
E = {{v1, v2}, {v2, v3}, {v3, v1}, {v4, v5}, {v5, v6}, {v6, v4}}.

Then, both n = m = 6, but G is not connected since there is for example no path from v1 to v4.
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(c) If G contains a Hamiltonian path, then G contains a Eulerian walk.

Solution:

This statement is false.
Consider the complete graph on 4 vertices, i.e.

V = {v1, v2, v3, v4}

and
E = {{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}}.

Then G has a Hamiltonian path v1, v2, v3, v4. But since every vertex has odd degree 3, it follows
that G has no Eulerian walk as we know from the lecture that a graph that has an Eulerian walk
has at most 2 vertices with odd degree.

(d) If every vertex of a non-empty graph G has degree at least 2, then G contains a cycle.

Solution:

This statement is true.

Proof using bound on the number of edges in a tree. Assume for a contradiction that G does
not contain a cycle. Then each of its connected components must be a tree. By a previous exercise,
we know that this implies that the total number of edges in G is at most n− 1. But each vertex of
G has degree at least 2, implying G has at least (2 · n)/2 = n edges, a contradiction.

Direct proof. We construct a cycle in G as follows. Let v1 be any vertex of G, and let v2 be a
neighbour of v1 (i.e., {v1, v2} is an edge). For 3 ≤ i ≤ n+ 1, inductively choose vertices vi so that
{vi, vi−1} is an edge, and vi ̸= vi−2. This is possible because each vertex ofG has degree at least 2,
and so vi−1 always has at least one neighbour which is not equal to vi−2.

We have thus created a walk in G of length n. As G only has n vertices, this means there exist
distinct 1 ≤ j, k ≤ n+1 such that vj = vk, and vj , vj+1, . . . , vk−1 are all distinct. By construction,
k ≥ j + 3, and so the vertices vj , vj+1, . . . , vk form a cycle (of length k − j).

(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct
vertices v, w, there is a vertex x such that {v, x} and {w, x} are both edges). Then there exists a
vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree n− 1).

Solution:

This statement is false.

A counterexample is given by the following graph:

(f) Let G be a connected graph with at least 3 vertices. Suppose there exists a vertex vcut in G so that
after deleting vcut, G is no longer connected. ThenG does not have a Hamiltonian cycle. (Deleting
a vertex v means that we remove v and any edge containing v from the graph).
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Solution:

This statement is true. Suppose for a contradiction thatG has aHamiltonian cycle v1, v2, v3, . . . , vn, v1,
which we order so that v1 = vcut. Then, after removing v1 = vcut from G, the resulting graph still
has a Hamiltonian path, namely v2, v3, . . . , vn. In particular, the resulting graph is still connected.

Guidelines for correction:

For awarding the bonus points, each subexercise (except (a)) should be split into two parts, namely
one part is giving the correct answer and the other part is giving a correct proof or counterexample.
Subexercise (a) contains only one part, namely the proof of the statement. If at least 2 parts are solved
correctly, 1/2 points should be awarded. If at least 5 parts are solved correctly, 1 point should be
awarded. If at least 8 parts are solved correctly, 3/2 points should be awarded. If all 11 parts are solved
correctly, 2 points should be awarded.
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